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Self-dual solutions for SU(2) gauge fields on Euclidean space that satisfy Yang’s ansatz
are generalized by consideringρ as a function ofφ for a special case whenρ is a complex
analytic function and for SU(3) when ¯ρ i , i = 1, 2, 3, are complex analytic functions.
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1. INTRODUCTION

To proceed in the study of self-dual SU(2) gauge field on Euclidean space we
introduce the variablesy, ȳ, z, z̄ by the relations

√
2y = x1+ i x2,

√
2ȳ = x1− i x2,

√
2z = x3+ i x4,

√
2z̄= x3+ i x4. (1.1)

The self-duality equations in four-dimensional Euclidean spacexµ = x1, x2,
x3, x4 are then (Yang, 1977)

Fyz = Fȳz̄ = 0, Fyȳ + Fzz̄ = 0, (1.2)

where

Fµv = ∂v Aµ − ∂µAv − [ Aµ, Av],

[ Aµ, Av] = AµAv − Av Aµ (1.3)
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is the curvature field taking its values in the algebra of SU(2) and SU(3)
(antihermitian representation), andAµ is the connection

Ay = D−1Dy, Az = D−1Dz, Aȳ = D̄−1D̄ ȳ, Az̄ = D̄−1D̄z̄, (1.4)

whereD and D̄ are arbitrary 2× 2 complex matrix functions ofy, ȳ, z, z̄ with
determinant= 1 (for SU(2) gauge group) andDy = ∂y D etc. For real gauge fields
Aµ = −A+µ (the symbol= is used for equations valid only for real values of
x1, x2, x3, andx4), we require

D̄ = (D+)−1. (1.5)

Gauge transformations are the transformations

D→ DU, D̄→ D̄U, U+U = I , (1.6)

where U is a 2× 2 complex matrix function ofy, ȳ, z, and z̄ with determi-
nant= 1. Under transformation (1.6), Eq. (1.5) remains unchanged. We now define
the hermitian matrixJ as

J ≡ DD̄−1 = DD+. (1.7)

J has the very important property of being invariant under the gauge transformation
equation (1.6). They only nonvanishing field strengths in terms ofJ become

Fµv̄ = −D̄−1(J−1Ju)v̄ D̄, (1.8)

(u, v = y, z) and the remaining self-duality equation (1.2) takes the form

(J−1Jy)ȳ + (J−1Jz)z̄ = 0. (1.9)

The action density in terms ofJ is

8(J) ≡ −1

2
Tr Fµv Fµv = −2Tr(FyȳFzz̄+ Fyz̄Fȳz)

= −2Tr{(J−1Jy)ȳ (J−1Jz)z̄− (J−1Jy)z̄ (J−1Jz)ȳ}. (1.10)

The Atiyah–Ward (Atiyah and Ward, 1977) construction begins by an explicit
parametrization of the matrixJ

J =


1

φ

ρ̄

φ

ρ

φ

φ2+ ρρ̄
φ

 , (1.11)

and for real gauge fieldsAµ = −A+µ we require

φ = real ρ̄ = ρ∗ (ρ∗ ≡ complex conjugate ofρ). (1.12)



P1: JQX

International Journal of Theoretical Physics [ijtp] pp1166-ijtp-484391 April 28, 2004 4:44 Style file version May 30th, 2002

Self-Dual Solutions for SU(2) and SU(3) Gauge Fields on Euclidean Space 153

The self-duality equations (1.9) take the form

1

2
¤ lnφ + (ρyρ̄ ȳ + ρzρ̄ z̄)

φ2
= 0, (1.13)

(
ρy

φ2

)
ȳ

+
(
ρz

φ2

)
z̄

= 0, (1.14)

(
ρ̄ ȳ

φ2

)
y

+
(
ρ̄z

φ2

)
z

= 0, (1.15)

¤ = 2(∂y∂ȳ + ∂z∂z̄).

Using Eqs. (1.13)–(1.15) one can reduce the action density equation (1.10) to the
following:

8(φ, ρ , ρ̄) = −1

2
¤¤ lnφ + 2

[
∂y∂ȳ

(
φzφz̄− ρyρ̄ ȳ

φ2

)
− ∂y∂z̄

(
φzφȳ + ρzρ̄ ȳ

φ2

)

+ ∂z∂z̄

(
φyφȳ − ρzρ̄ z̄

φ2

)
− ∂z∂ȳ

(
φyφz̄+ ρyρ̄ z̄

φ2

)]
. (1.16)

The Corrigan–Fairlie–‘t Hooft–Wilczek (CFTW) ansatz and ‘t Hooft’s solution
have a simple form in terms ofφ, ρ andρ̄.

CFTW ansatz

ρy = φz̄, ρz = −φȳ, ρ̄y = φz, ρ̄ z̄ = −φy,

‘t Hooft solution

¤φ = 0, φ = 1+
q∑

j=1

λ2
j

(x − xj )2
, (1.17)

8(φ, ρ , ρ̄) = −1

2
¤¤ lnφ.

The paper is organized as follows. In Section 2 we give the reduced equations
for self-dual SU(2) gauge fields giving new solutions withρ as a function ofφ,
whenρ is a complex analytic function. In Section 3 the self-dual SU(3) Yang–Mills
fields parametrised in aR-gauge are solved with a particular two function ansatz
whenρ̄ are complex analytic functions,i = 1, 2, 3.
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2. ON THE YANG R-GAUGE FOR SU(2)

2.1. Self-Dual Solutions for SU(2) Gauge Fields on Euclidean Space
When ρ Is a Function ofφ

Yang (1977) has reduced the equations for self-dual SU(2) gauge fields on
Euclidean space to the following equations

φ(φyȳ + φzz̄)− φyφȳ − φzφz̄+ ρyρ̄ ȳ + ρzρ̄ z̄ = 0,

φ(ρyȳ + ρzz̄)− 2ρyφȳ − 2ρzφz̄ = 0. (2.1)

Let ρ = ρ(φ), then we find

ρy = ρ ′φy, ρz = ρ ′φz, ρyȳ = ρ ′′φyφȳ + ρ ′φyȳ, and ρzz̄ = ρ ′′φzφz̄+ ρ ′φzz̄.

Then Eq. (2.1) become

φ(φyȳ + φzz̄)+ (ρ ′2− 1)(φyφȳ + φzφz̄) = 0,

φρ ′(φyȳ + φzz̄)+ (φρ ′′ − 2ρ ′)(φyφȳ + φzφz̄) = 0. (2.2)

If we do not consider the caseφyȳ + φzz̄ = 0 andφyφȳ + φzφz̄ = 0 then we have

φρ ′′ − ρ ′ − ρ ′3 = 0, (2.3)

by integration we obtain

ρ ′ = ± cφ√
1− c2φ2

, (2.4)

and

ρ = ∓1

c

√
1− c2φ2+ c′. (2.5)

Equation (2.2) reduce to the Eq. (2.3). A solution is given by

φy = φz, φȳ = −φz̄. (2.6)

A class of solutions is given by

φ = F(y+ z, ȳ− z̄), (2.7)

where F is an arbitrary function. Equations (2.5) and (2.7) gives a new set of
solutions of Yang’s equations for self-dual SU(2) gauge fields.

2.2. Self-Dual Solutions for SU(2) Gauge Fields on Euclidean Space
When ρ Is a Complex Analytic Function

Sinceρ is a complex analytic function ofy andz, then we have

ρȳ = ρz̄ = 0, ρyȳ + ρzz̄ = 0. (2.8)
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The self-dual Yang–Mills equations take the form

φ(φyȳ + φzz̄)− (φyφȳ + φzφz̄) = 0, ρyφȳ + ρzφz̄ = 0. (2.9)

Yang (1977) has indicated the existence of a class of solutions of Eq. (2.9) that
satisfies

ρy = φz̄, ρz = −φȳ, (2.10)

yielding

φ = ρyz̄− ρzȳ+ f (y, z). (2.11)

In the present section we seek to generalize the solutions by seeking solutions of
Eq. (2.9) for the ansatz (Dipankar, 1980)

ρy = ψz̄, ρz = −ψȳ, (2.12)

butρ doesn’t contain̄y andz̄ and thusψ may be almost linear in̄y andz̄, where
ψ is any complex function, from (2.12) we get the last equation of (2.8) and

ψyȳ + ψzz̄ = 0. (2.13)

Putting (2.12) into Eq. (2.9), gives

ψ = ψ(φ). (2.14)

Putting (2.14) into (2.13), gives

ψφ(φyȳ + φzz̄)+ ψφφ(φyφȳ + φzφz̄) = 0, (2.15)

from Eq. (2.9) and (2.15) we obtain∣∣∣∣∣ φ −1

ψφ ψφφ

∣∣∣∣∣ = 0,
ψ ′′

ψ ′
= − 1

φ
,

then

φ = c′ecψ , (2.16)

wherec andc′ are integration constants.
Equations (2.11) and (2.16) gives a new set of solutions of Yang’s equations

for self-dual SU(2) gauge fields.

3. ON THE YANG R-GAUGE FOR SU(3) WHEN ρ̄i ARE
COMPLEX ANALYTIC FUNCTIONS, i = 1, 2, 3

The self-dual SU(3) Yang–Mills fields parametrised in aR-gauge has been
formulated in Singh and Tchrakian (1981), Brihayeet al. (1978), and Prasad
(1980). Singh and Tchrakian (1981) have achieved the integration of four of the
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eight SU(3) self-duality equations by virtue of theR-gauge parametrisation, and
presented a particular two-function ansatz that solves all eight equations. In this
section, following Singh and Tchrakian (1981), we achieve the integration of six
of the eight SU(3) self-duality equations by the virtue of theR-gauge parametrisa-
tion. Further we present a particular two-function ansatz that solves all eight equa-
tions, by choosing ¯ρ i as complex analytic functions (i = 1, 2, 3). Now we solve
whenρ̄ i are complex analytic function. At this point, we follow Yang (1977) to
choose a gauge (theR-gauge) in parametrising the (3× 3) unimodular matricesD
andD̄ as

D = R= (φ1φ2)−1/3

 1 0 0

ρ1 φ1 0

ρ2 ρ3 φ2

 , (3.1)

D̄ = R̄= (φ1φ2)1/3

1 −ρ̄1/φ1 (ρ̄1ρ̄3− φ1ρ̄2)/φ1φ2

0 1/φ1 −ρ̄3/φ1φ2

0 0 1/φ2

 , (3.2)

where, for real values ofxµ, ρ̄ i = ρ∗i (i = 1, 2, 3), andR̄= (R+)−1.
Using this parametrisation, the potentials take the form

Ay =


−1

3
∂y lnφ1φ2 0 0

ρ1y/φ1
−1

3
∂y ln

(
φ2/φ

2
1

)
0[

ρ2y −
(
ρ3

φ1

)
ρ1y

]/
φ2 (φ1/φ2)∂y(ρ3/φ1)

−1

3
∂y ln

(
φ1/φ

2
2

)

 ,

Aȳ =


1

3
∂ȳ lnφ1φ2 −ρ̄1ȳ/φ1 −[ρ̄2ȳ − (ρ̄3/φ1)ρ̄1ȳ]/φ2

0
1

3
∂y ln

(
φ2/φ

2
1

) −(φ1/φ2)∂ȳ(ρ̄3/φ1)

0 0
1

3
∂y ln

(
φ1/φ

2
2

)

 . (3.3)

Before proceeding to investigate the remaining self-duality equation (1.2), we
make a remark on the form of the gauge covariant hermitian matrix field

J = RR+ = (φ1φ2)−2/3


1 ρ̄1 ρ̄2

ρ1 ρ1ρ̄1+ φ2
1 ρ1ρ̄2+ ρ̄3φ1

ρ2 ρ2ρ̄1+ ρ3φ1 ρ2ρ̄2+ ρ3ρ̄3+ φ2
2

 . (3.4)

Moreover theJ matrix for SU(2) gauge fields in theR-gauge turned out to be
related to the Atiyah–Ward ansatz (Atiyah and Ward, 1977).
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There will be eight nonlinear differential equations involving the functions
φ1, φ2, ρi , ρ̄ i (i = 1, 2, 3). To simplify these expressions we eliminate (ρ1y, ρ̄1ȳ,
ρ1z, ρ̄1z̄), (ρ2y, ρ̄2ȳ, ρ2z, ρ̄2z̄), using the following replacements,

5̄z̄ = (ρ2y − ρρ1y)/φ2
2, 5̄ȳ = −(ρ2z− ρρ1z)/φ

2
2, (3.5)

5z = (ρ̄2ȳ − ρρ1ȳ)/φ2
2, 5y = −(ρ̄2z̄− ρρ1z̄)/φ

2
2, (3.6)

and

ψ̄ z̄ =
(
ρ1y/φ

2
1

)− ρ̄5̄z̄, ψ̄ ȳ = −
(
ρ1z/φ

2
1

)− ρ̄5̄ȳ, (3.7)

ψz =
(
ρ̄1ȳ/φ

2
1

)− ρ5z, ψy = −
(
ρ̄1z̄/φ

2
1

)− ρ5y, (3.8)

whereρ = ρ3/φ1 andρ̄ = ρ̄3/φ1. Then Eq. (1.2) can be expressed in the following
form

∂y5z− ∂z5y = 0, ∂ȳ5̄z̄− ∂z̄5̄ȳ = 0, (3.9)

∂yψz− ∂zψy = 0, ∂ȳψ̄ z̄− ∂z̄ψ̄ ȳ = 0, (3.10)

(∂y∂ȳ + ∂z∂z̄) Inφ1+ φ2
1(ψ̄ z̄ψz− ψ̄ ȳψy)

+ (φ2
1ρρ̄ + 1/2φ2

2

)
(5̄z̄5z+ 5̄ȳ5y)

+φ2
1ρ̄(5̄z̄ψz+ 5̄ȳψy)+ φ2

1ρ(5zψ̄ z̄+5yψ̄ ȳ)

− 1

2
(81/φ2)2(ρ̄ z̄ρz+ ρ̄ ȳρy) = 0, (3.11)

(∂y∂ȳ + ∂z∂z̄) Inφ2+ 1/2φ2
1(ψ̄ z̄ψz− ψ̄ ȳψy)

+ (1/2φ2
1ρρ̄ + φ2

2

)
(5̄z̄5z+ 5̄ȳ5y)

+ 1/2φ2
1ρ̄(5̄z̄ψz+ 5̄ȳψy)+ 1/2φ2

1ρ(5zψ̄ z̄+5yψ̄ ȳ)

+ 1

2
(81/φ2)2(ρ̄ z̄ρz+ ρ̄ ȳρy) = 0, (3.12)

(∂y∂ȳ + ∂z∂z̄)ρ + 2ρy∂ȳ ln (φ1/φ2)+ 2ρz∂z̄ ln (φ1/φ2)

+φ2
2[(5z̄ψz+ 5̄ȳψy)+ ρ(5̄z̄5z+ 5̄ȳ5y)] = 0, (3.13)

(∂y∂ȳ + ∂z∂z̄)ρ̄ + 2ρ̄ ȳ∂y ln (φ1/φ2)+ 2ρ̄ z̄∂z ln (φ1/φ2)

+φ2
2[(5zψ̄ z̄+5yψ̄ ȳ)+ ρ̄(5̄z̄5z+ 5̄ȳ5y)] = 0. (3.14)

Now we suppose that ¯ρ i are analytic function ofy andz. Then Eq. (3.6) and (3.8)
become

5y = 5z = 0, (3.15)
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and

ψy = ψz = 0.

Then Eq. (1.2) can be expressed in the following form

∂ȳ5̄z̄− ∂z̄5̄ȳ = 0, (3.16)

∂ȳψ̄ z̄− ∂z̄ψ̄ ȳ = 0, (3.17)

(∂y∂ȳ + ∂z∂z̄) lnφ1− 1

2
(φ1/φ2)2(ρ̄ z̄ρz+ ρ̄ ȳρy) = 0, (3.18)

(∂y∂ȳ + ∂z∂z̄) lnφ2+ 1

2
(φ1/φ2)2(ρ̄ z̄ρz+ ρ̄ ȳρy) = 0, (3.19)

(∂y∂ȳ + ∂z∂z̄)ρ + 2ρy∂ȳ ln (φ1/φ2)+ 2ρz∂z̄ ln (φ1/φ2) = 0, (3.20)

(∂y∂ȳ + ∂z∂z̄)ρ̄ + 2ρ̄ ȳ∂y ln (φ1/φ2)+ 2ρ̄ z̄∂z ln (φ1/φ2) = 0. (3.21)

Thus we obtain six equations (3.16)–(3.21), Eqs. (3.16) and (3.17) are identi-
cally satisfied. This has been achieved by virtue of the replacements (3.15). There
remains to solve the four equations (3.18)–(3.21), involving the four functions
φ1, φ2, ρ, and ¯ρ. These are second-order coupled nonlinear equations. From
Eqs. (3.18) and (3.19) we obtain

φ2 = 1

φ1
. (3.22)

From Eqs. (3.18) and (3.22) we find

(∂y∂ȳ + ∂z∂z̄) lnφ1− 1

2
φ4

1(ρ̄ z̄ρz+ ρ̄ ȳρy) = 0. (3.23)

From Eq. (3.20) we find

(∂y∂ȳ + ∂z∂z̄)ρ + 2ρy∂ȳ lnφ2
1 + 2ρz∂z̄ lnφ2

1 = 0. (3.24)

Sinceρ is a function ofφ1 then we obtain from (3.23) and (3.24)

1

φ1
(φ1yȳ + φ1zz̄)+

[(− 1/φ2
1

)− 1/2
(
φ4

1ρ
′2)] (φ1zφ1z̄+ φ1yφ1ȳ) = 0, (3.25)

ρ ′(φ1yȳ + φ1zz̄)+ [ρ ′′ + 4ρ ′/φ1](φ1zφ1z̄+ φ1yφ1ȳ) = 0, (3.26)

ρ ′′ + (5/φ1)ρ ′ + (1/2)φ5
1ρ
′3 = 0, (3.27)

Consequently we obtainρ3

ρ3 =
iφ1
(
1− 4c2φ4

1

)1/2
4c2

[
φ4

1 −
1

6

(
1− 4c2φ4

1

)]+ c′φ1. (3.28)
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Similarly, from Eqs. (3.19) and (3.21) we obtain ¯ρ3

ρ̄3 =
−iφ1

(
1− 4c2φ4

1

)1/2
4c2

[
φ4

1 −
1

6

(
1− 4c2φ4

1

)]+ c′φ1,

wherec andc′ are integration constants.
From Eqs. (3.16) and (3.17) we can obtainρ1y, ρ1z, ρ2y, andρ2z as

ρ1y = φ1z̄, ρ1z = −φ1ȳ;

ρ2y = φ2z̄, ρ2z = −φ2ȳ. (3.29)

Equations (3.22), (3.28), and (3.29) gives a new set of solutions of Yang’s equations
for self-dual SU(3) gauge fields.
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