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Self-Dual Solutions for SU(2) and SU(3) Gauge
Fields on Euclidean Space
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Self-dual solutions for SU(2) gauge fields on Euclidean space that satisfy Yang’s ansatz
are generalized by considerip@s a function o for a special case whenis a complex
analytic function and for SU(3) when, T = 1, 2, 3, are complex analytic functions.
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1. INTRODUCTION
To proceed in the study of self-dual SU(2) gauge field on Euclidean space we

introduce the variableg, y, z, z by the relations

\/§y=X1+iX2, \/2)72 X1 —iXo,

V2z2=X3+iXa,  ~2Z= X3+ iXa. (1.1)
The self-duality equations in four-dimensional Euclidean spgge= xi, Xo,
X3, X4 are then (Yang, 1977)

Fy:=Fpz=0, Fyg+ Fz=0, (1.2)

where
Fuo = 0vAL — 3. A — [AL, AJ],
[AL Al =AA — AA, 1.3)
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is the curvature field taking its values in the algebra of SU(2) and SU(3)
(antihermitian representation), aiq is the connection

A,=D"'D,, A,=D7'D,, A;=D"!Dy, A;=D"'D3 (1.4)

whereD and D are arbitrary 2x 2 complex matrix functions o, y, z, z with
determinant= 1 (for SU(2) gauge group) arldly = dy D etc. For real gauge fields
A, = —A} (the symbol= is used for equations valid only for real values of
X1, X2, X3, andXy), we require

D= (D" (1.5)
Gauge transformations are the transformations
D—-DU, D-— DU, U'U=I, (1.6)

whereU is a 2x 2 complex matrix function ofy, y, z, and z with determi-
nant= 1. Under transformation (1.6), Eq. (1.5) remains unchanged. We now define
the hermitian matrixJ as

J=DD'=DD. (1.7)

J hasthe very important property of being invariant under the gauge transformation
equation (1.6). They only nonvanishing field strengths in terms loécome

F.z=—D "3 3)7D, (1.8)
(u, v =y, 2) and the remaining self-duality equation (1.2) takes the form
1)y + 7 )z=0. (1.9)

The action density in terms ¥ is
1
d(J) = —ETr FuvFuv = —2Tr(FyyFz + FyzFy)

= 2TH(I M)y (I ) - (7130 ). (1.10)

The Atiyah—Ward (Atiyah and Ward, 1977) construction begins by an explicit
parametrization of the matrix

2
é
_ 1.11
*+ pp (41
é

and for real gauge fielda,, = — A we require

S|l S|k

¢=real p=p" (p*=complex conjugate af). (1.12)
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The self-duality equations (1.9) take the form

1 (g + puis)
Py Pz) _o 1.14
<¢2)y+ <¢2>z ' (L14)
oy 0z
Py Pz\ _o. 1.15
<¢2>y+ (¢2>Z (1.19)

0 = 2(3ydy + 8,95).

Using Egs. (1.13)—(1.15) one can reduce the action density equation (1.10) to the
following:

(¢, p, p) = —%Dmlmb + 2[3an7 <¢>z¢2¢;2,0y,0y> _ ay82<¢z¢+2pzpy>

+ 0,05 (¢y¢y¢ :02102> . azay <¢y¢i(;‘zpyp_f> :| (1.16)

The Corrigan—Fairlie—'t Hooft-Wilczek (CFTW) ansatz and ‘t Hooft's solution
have a simple form in terms @f, p andp.
CFTW ansatz

Py = ¢Zr Pz = _¢)71 ,O_y = ¢Zi IO_Z: _¢y1

‘t Hooft solution
O0¢p=0, ¢= 1+Z(x—xj)2' (1.17)

1
(¢, p, p) = —éDljlnd).

The paper is organized as follows. In Section 2 we give the reduced equations
for self-dual SU(2) gauge fields giving new solutions wjtlas a function of,
whenp is a complex analytic function. In Section 3 the self-dual SU(3) Yang—Mills
fields parametrised in R-gauge are solved with a particular two function ansatz
whenp are complex analytic functions= 1, 2, 3.
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2. ON THE YANG R-GAUGE FOR SU(2)

2.1. Self-Dual Solutions for SU(2) Gauge Fields on Euclidean Space
When p Is a Function of ¢

Yang (1977) has reduced the equations for self-dual SU(2) gauge fields on
Euclidean space to the following equations

P (Byy + ¢z2) — dypy — 27 + pypy + p207 =0,

P(pyy + pzz) — 2095 — 20267 = 0. (2.1)
Let p = p(¢), then we find
Py =p'by, pz=p'¢z pyy=p"dydy+ p'dyy, and pz = p"¢.07+ p'¢2z
Then Eq. (2.1) become

Py + dz2) + (0? = D)@ydy + ¢207) = O,

¢/0l(¢y)7 + ¢zi) + (¢PN - 2,0,)(¢y¢)7 + ¢Z¢Z) =0. (2-2)
If we do not consider the caggy + ¢,z = 0 andgy¢y + ¢.¢7 = 0 then we have
pp" —p' —p°=0, (2.3)
by integration we obtain
, Co
=t— 2.4
P T-og (2.4)
and
1 U
P=Fg 1-c2¢p?2+cC. (2.5)
Equation (2.2) reduce to the Eq. (2.3). A solution is given by
by = ¢z, oy = —dz. (2.6)
A class of solutions is given by
¢=F(y+zy-2, (2.7)

where F is an arbitrary function. Equations (2.5) and (2.7) gives a new set of
solutions of Yang'’s equations for self-dual SU(2) gauge fields.

2.2. Self-Dual Solutions for SU(2) Gauge Fields on Euclidean Space
When p Is a Complex Analytic Function

Sincep is a complex analytic function of andz, then we have

Py = pz = 0, Pyy + Pz = 0. (2.8)
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The self-dual Yang—Mills equations take the form

¢(¢y)7 + ¢Zf) - (¢Y¢)7 + ¢Z¢Z) =0, Py¢}7 + p27 = 0. (2-9)

Yang (1977) has indicated the existence of a class of solutions of Eq. (2.9) that
satisfies

py =z, pz= —dy, (2.10)
yielding
¢ = pyZ— pzy + f(y, 2). (2.11)

In the present section we seek to generalize the solutions by seeking solutions of
Eq. (2.9) for the ansatz (Dipankar, 1980)

py=Vz  pr=—Vy. (2.12)

but p doesn't contairy andz and thuss may be almost linear iy andz, where
¥ is any complex function, from (2.12) we get the last equation of (2.8) and

VYyy + ¥z = 0. (2.13)
Putting (2.12) into Eq. (2.9), gives
v =Y(9) (2.14)
Putting (2.14) into (2.13), gives
Vo (Byy + 022) + Vo (dydy + ¢2¢7) = 0, (2.15)
from Eq. (2.9) and (2.15) we obtain
¢ -1 -0 1//_” _ 1
Vo Ve ’ v’ ¢’
then
¢ =ceV, (2.16)

wherec andc’ are integration constants.
Equations (2.11) and (2.16) gives a new set of solutions of Yang’s equations
for self-dual SU(2) gauge fields.

3. ON THE YANG R-GAUGE FOR SU(3) WHEN p; ARE
COMPLEX ANALYTIC FUNCTIONS, i=1,2,3

The self-dual SU(3) Yang—Mills fields parametrised iRRggauge has been
formulated in Singh and Tchrakian (1981), Brihageal. (1978), and Prasad
(1980). Singh and Tchrakian (1981) have achieved the integration of four of the
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eight SU(3) self-duality equations by virtue of tRegauge parametrisation, and
presented a particular two-function ansatz that solves all eight equations. In this
section, following Singh and Tchrakian (1981), we achieve the integration of six
of the eight SU(3) self-duality equations by the virtue of Rxgauge parametrisa-
tion. Further we present a particular two-function ansatz that solves all eight equa-
tions, by choosing; as complex analytic functions & 1, 2, 3). Now we solve
when p; are complex analytic function. At this point, we follow Yang (1977) to
choose a gauge (tHe-gauge) in parametrising the ¢33) unimodular matrice®

andD as

1 0 O
D=R=(p1¢2) ®| p1 ¢» O |, (3.1)
P2 P32
1 —p1/¢1 (p1p3 — $102)/ D102
D=R=(1¢2)"*| 0 L/¢n —p3/ P12 : (3.2)
0 0 i)

where, for real values of,, pi = p*(i =1, 2, 3), andR = (R)~L.
Using this parametrisation, the potentials take the form

1
?8), |I’l ¢1¢2 O O
-1
A = P1y/P1 ?3y In (¢2/9%) 0 .

-1
[sz - <£) Ply] /¢2 (¢1/$2)dy(03/P1) ?3y|n (¢1/93)

1 _ _ _ _
éayln d12 —p1y/$1 —[p2y — (p3/P1)P17]/ P2
1 _
Ay= 0 J%yIn(ea/gr)  —(@1/905(pa/r) |- (33)
1
|0 0 3010 (91/03)

Before proceeding to investigate the remaining self-duality equation (1.2), we
make a remark on the form of the gauge covariant hermitian matrix field

1 01 02
J=RR" = (¢162)7°| p1  p1p1+ ¢? p1P2 + P31 . (B4

P2 p2p1+ pad1  p2p2 + paps + P

Moreover theJ matrix for SU(2) gauge fields in thRB-gauge turned out to be
related to the Atiyah—Ward ansatz (Atiyah and Ward, 1977).



Self-Dual Solutions for SU(2) and SU(3) Gauge Fields on Euclidean Space 157

There will be eight nonlinear differential equations involving the functions
o1, 2, pi, pi(i = 1, 2, 3). To simplify these expressions we eliminaig, { o1y,
P1z, p_li)y (p2y1 )0_2)71 P2z, /O_Zf)a USIng the fOHOWIng replacementsa

Mz = (o2y — pp1y)/93, Ty = —(p2z — pp12)/ b3, (3.5)

M, = (p2y — PP13)/95. Ty = —(02z — PP12)/ 93, (3.6)
and

¥z = (pry/9?) — pTlz, ¥y = —(p1/97) — P13, 3.7)

Vo = (pag/93) — oMz Yy = —(p1z/92) — Ty, (3.8)

wherep = p3/¢1 andp = p3/¢1. Then Eq. (1.2) can be expressed in the following
form

g, — 3,y = 0, d5T1z — a1y = O, (3.9)
dywz — dzy =0, dyvz—dzy =0, (3.10)
(0y0y + 0,07) In 1 + P2 (Vv — Yhy)
+ (#0205 + 1/2¢2)(T5T1, + MyTly)
+ 2Nz, + Tgyry) + ¢2p(Mpz + Myiry)
1 _ _
- §(¢1/¢2)2(Pipz + pypy) =0, (3.11)
(8ydy + 9,07) I 2 + 1/202(Yrzvr, — Yyry)
+(1/2¢3 00 + ¢3)(M5T1, + Ty T1y)
+1/2¢2p(Tzy + Tyyry) + 1/202p(M, 3z + Ty ry)

+ %(%/fﬁz)z(ﬁzpz + pypy) =0, (3.12)
(dydy + 9207)p + 2pydy I (P1/¢2) + 29,071 (P1/¢2)

+ @3Nz, + Myry) + p(MZIT, + MyTT,)] = 0, (3.13)
(3ydy + 3292)p + 2050y In (p1/$2) + 2079, In ($1/¢2)

+ Q3T W7 + Ty ¥ry) + AT, + TgTy)] = 0. (3.14)

Now we suppose that; are analytic function of andz. Then Eg. (3.6) and (3.8)
become

My =T, =0, (3.15)
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and
Yy =9,=0.
Then Eg. (1.2) can be expressed in the following form
35Tz — 0511y = 0, (3.16)
gz — dz9ry =0, (3.17)
(9ydy + 920z) In 1 — %(¢1/¢2)2(,0_sz + pypy) =0, (3.18)
(g + 320) 1162+ 5 (61/9 P22 + 70) = O, 319)

(8ydy + 9,07)p + 2pydyIn (P1/¢2) + 2pz97In (¢1/¢2) =0,  (3.20)
(3ydy + 8207)p + 2033y In (1/$2) + 2020,In(p1/¢2) = 0. (3.21)

Thus we obtain six equations (3.16)—(3.21), Egs. (3.16) and (3.17) are identi-
cally satisfied. This has been achieved by virtue of the replacements (3.15). There
remains to solve the four equations (3.18)—(3.21), involving the four functions
o1, 2, p, and p. These are second-order coupled nonlinear equations. From
Egs. (3.18) and (3.19) we obtain

1
= —. 3.22
2 o (3.22)
From Egs. (3.18) and (3.22) we find
1, _
(dydy + 9297) In 1 — Ed)f(pipz + pypy) = 0. (3.23)
From Eg. (3.20) we find
(8ydy + 8,07)p + 2pydyIn P2 + 20,07In p2 = 0. (3.24)

Sincep is a function ofp, then we obtain from (3.23) and (3.24)
1
a(ahyy + ¢122) + [(— 1/8F) — 1/2(610%)] (pr2h17 + $ry¢hry) =0,  (3.25)

0 (P1yy + d12z) + [p" + 40/ P1l(P12017 + P1yry) = O, (3.26)
p" + (5/¢1)p" + (1/2)¢30" =0, (3.27)

Consequently we obtaipg

i1 (1 — ac2p?) 1
LT e ¢) [qbi‘— 6(1—4c2¢1‘)} +C¢r. (3.28)

03
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Similarly, from Eqgs. (3.19) and (3.21) we obtaig —
—ign(L1—4c2gt)? 1
¢1( ¢1) |: :| + C/¢1,

— 4 2.4
p3 = 102 ¢1 — 6(1 — 4c%¢Y)
wherec andc’ are integration constants.

From Egs. (3.16) and (3.17) we can obtaip, p1, p2y, andp,; as

Py = P17, P12 = — 1y,
P2y = §2z, P22 = — 2. (3.29)

Equations (3.22), (3.28), and (3.29) gives a new set of solutions of Yang'’s equations
for self-dual SU(3) gauge fields.
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